Monotonicity-preserving rational bi-cubic spline surface interpolation
نویسندگان
چکیده
منابع مشابه
Monotonicity-Preserving Piecewise Rational Cubic Interpolation
An explicit representation of a C1 piecewise rational cubic spline has been developed, which can produce a monotonic interpolant to given monotonic data. The explicit representation is easily constructed, and numerical experiments indicate that the method produces visually pleasing curves. Furthermore, an error analysis of the interpolant is given.
متن کاملShape Preserving Interpolation Using C2 Rational Cubic Spline
Abstract: This study proposes new C rational cubic spline interpolant of the form cubic/quadratic with three shape parameters to preserves the geometric properties of the given data sets. Sufficient conditions for the positivity and data constrained modeling of the rational interpolant are derived on one parameter while the remaining two parameters can further be utilized to change and modify t...
متن کاملPositivity-preserving rational bi-cubic spline interpolation for 3D positive data
This paper deals with the shape preserving interpolation problem for visualization of 3D positive data. A required display of 3D data looks smooth and pleasant. A rational bi-cubic function involving six shape parameters is presented for this objective which is an extension of piecewise rational function in the form of cubic/quadratic involving three shape parameters. Simple data dependent cons...
متن کاملPositivity-Preserving Piecewise Rational Cubic Interpolation
A piecewise rational cubic spline [5] has been used to visualize the positive data in its natural form. The spline representation is interpolatory and applicable to the scalar valued data. The shape parameters in the description of a rational cubic have been constrained in such a way that they preserve the shape of the positive data in the view of positive curve. As far as visual smoothness is ...
متن کاملConvex Surface Visualization Using Rational Bi- cubic Function
The rational cubic function with three parameters has been extended to rational bi-cubic function to visualize the shape of regular convex surface data. The rational bi-cubic function involves six parameters in each rectangular patch. Data dependent constraints are derived on four of these parameters to visualize the shape of convex surface data while other two are free to refine the shape of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ScienceAsia
سال: 2014
ISSN: 1513-1874
DOI: 10.2306/scienceasia1513-1874.2014.40s.022